It is shown that the time to compute a monotone boolean function depending upon $n$ variables on a CREW-PRAM satisfies the lower bound $T = \Omega$(log $l$ + (log $n$)/$l$), where $l$ is the size of the largest prime implicant. It is also shown that the bound is existentially tight by constructing a family of monotone functions that can be computed in $T = O$(log $l$ + (log $n$)/$l$), even by an EREW-PRAM. The same results hold if $l$ is replaced by $L$, the size of the largest prime clause. An intermediate result of independent interest is that $S (n,l)$, the size of the largest minimal vertex cover minimized over all (reduced) hypergraphs of $n$ vertices and maximum hyperedge size $l$, satisfies the bounds $\Omega(n^{1/l}) \leq S (n,l) \leq O (ln^{1/l}).$
展开▼
机译:结果表明,根据CREW-PRAM上$ n $变量计算单调布尔函数的时间满足下限$ T = \ Omega $(log $ l $ +(log $ n $)/ $ l $) ,其中$ l $是最大素数蕴涵的大小。通过构造一个单调函数族,即使通过EREW-,也可以以$ T = O $(log $ l $ +(log $ n $)/ $ l $)计算出单调函数的界,从而证明该边界在本质上是紧密的。 PRAM。如果将$ l $替换为最大素数子句的大小$ L $,则结果相同。独立利益的中间结果是,$ S(n,l)$(在$ n $个顶点的所有(缩小的)超图上的最大最小顶点覆盖的大小和最大超边尺寸$ l $的最小化)满足边界$ \ Ω(n ^ {1 / l})\ leq S(n,l)\ leq O(ln ^ {1 / l})。$
展开▼